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Last Lecture

• Generative Modeling

• Variational Autoencoders

• Diffusion Models
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This Lecture

• Speech Recognition

• Speaker Recognition
• Speaker Identification
• Speaker Verification

• Humans as Deepfake Audio Detectors
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Extracting Information from Audio
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Speech Recognition
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• Digitization
• Acoustic analysis of the speech signal
• Linguistic interpretation

Acoustic waveform Acoustic signal

Speech recognition

https://personalpages.manchester.ac.uk/staff/harold.somers/LELA30431/Automatic%20Speech%20Recognition.ppt



Audio Samples: Waveform
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The frequency is 16kHz, if the audio clip is 1 second or less, then we use 
padding; if longer than 1 second, then we trim longer ones.



Fourier transform and Short-Time Fourier Transform 

• A Fourier transform converts a signal to its component 
frequencies but loses all time information.

• Short-Time Fourier Transform (STFT) splits the signal into 
windows of time and runs a Fourier transform on each window, 
preserving some time information, and returning a 2D tensor.
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Audio Samples: Spectrogram

• Time frequency domain signals:
•  STFT to convert waveform to spectrograms

• Spectrograms show frequency changes over time and can 
be represented as 2D images

• Feed the spectrogram images into your neural network to 
train the model
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STFT Spectrogram
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Time domain to Time-frequency domain

• The waveforms need to be of the same length, so that when you 
convert them to spectrograms, the results have similar 
dimensions.

• The STFT produces an array of complex numbers representing 
magnitude and phase. We can get the absolute value of the 
complex numbers for the magnitude information
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Example: Fully Convolutional Model
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Fully Convolutional Speech Recognition. https://arxiv.org/pdf/1812.06864

Predict letters directly with the 
Auto Segmentation Criterion.



This Lecture

• Speech Recognition

• Speaker Recognition
• Speaker Identification
• Speaker Verification

• Humans as Deepfake Audio Detectors
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Speaker Recognition
Biometric modality consisting in recognizing people from the 
characteristics of their voices 
• Properties of speech influenced by: 

• Anatomy:
•  Shape and size of voice production organs (vocal track, larynx, nasal cavity) 

• Behavioral patterns (Manner of Speaking): 
• Accent, rhythm, intonation style, pronunciation pattern, vocabulary

•  Advantages: 
• Easy to use, speech is a natural way of communication 
• Non-intrusive, well accepted by users

9/17/2024 CIS6930 Trustworthy AI Systems 13



Speaker Identification

• Determine whether a test speaker matches one of a set of known 
speakers 
• Referred as closed-set identification.
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Speaker Verification

• Determine whether a test speaker matches a specific target speaker 
• Unknown speech may come from a large set of unknown speakers – 

referred as open-set verification 
• This is most common task in speaker recognition, close to real 

application.
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Acoustic Features

• Time sequence of acoustic features is needed to extract the 
speech information
• Time-frequency representation of the signal
• Filter bank in log Mel scale (Mel filtered spectrogram)
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Speaker Embedding
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Speaker Embedding: X-vectors
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X-vectors: Robust dnn embeddings for speaker recognition. ICASSP 2018



Metric
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Probabilistic Linear discriminant Analysis



Choosing Threshold
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Performance Metric
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Voice Cloning (Take a break)
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https://www.youtube.com/watch?v=vhArHsfsLAQ



Audio Deepfake Detection

Factors in real audio or fake audio
• Airflow pressure
• Time-difference-of-arrival of phoneme sequences
• The pop sound made by a breath
• The attributes of the airwaves 
• The movement or structure of the human vocal 

anatomy
• Subtle spectral differences
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A Large-Scale Evaluation of Humans as Audio Deepfake 
Detectors
Contribution

• Largest user study on audio deepfake detection
• 1200 participants
• Three datasets: Wavefake, ASVspoof2021, and FakeAVCeleb

• Qualitative study identifying decision factors

• Comparative analysis on human and ML performance

"Better Be Computer or I’m Dumb": A Large-Scale Evaluation of Humans as Audio Deepfake Detectors CCS 2024
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Research questions

• What are the performance metrics for humans used in audio 
deepfake detection?

• What are the common themes affecting how humans classify 
audio deepfake samples as real or fake?

• Is there a demonstrable difference in audio deepfake detection 
capability between humans and ML models?
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Data Preparation for Survey

For each participant, we randomly select 20 samples from one of these populations. Each sample is 
listened to by at least three unique participants
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Individual User Performance

• Each dataset had at least one person 
score a perfect accuracy, however, 
the average performance varied from 
dataset to dataset. 

• On average, participants performed 
better on FakeAVCeleb and worse on 
the Wavefake dataset.
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Individual user accuracy on the 20 
samples given to each participant



Application of Voting Scheme
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User accuracy based on consensus voting by dataset on human audio 
versus deepfake audio, and human accuracy on the audio overall. 



Thematic Analysis

The codebook for categorizing responses from participants in the user 
study. The authors analyze each response using eight unique codes with 
corresponding keywords, then group those codes into three major themes.
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Reasoning Themes

It demonstrates that Prosody 
is the most common factor 
that contributes to 
classification decisions by 
people, while Speed is the 
least common.
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Appearance rate of the eight codes used 
in the thematic analysis. 



Key Findings
• Participants have pre-conceived ideas of what computer voice generation is capable of, 

which impacts how they reason about detecting deepfake audio.

• Audio artifacts play a key role in how participants discriminate on deepfake audio, which 
could easily be manipulated by deepfake generators.

• While not as prevalent as linguistic features, participants still heavily rely on intuition when 
discriminating on deepfake audio.

• Humans misclassify fake samples which exhibit organic features and real samples that 
sound robotic at high rates. 

• Humans perform well on real and fake samples that primarily feature sentence mistakes, 
odd speed, and quality issues.
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Comparison with ML Detectors

The classification breakdown for the 
average human and average model 
performance on the ASVspoof2021 
samples Dasv . 

We show that the average human is 
more prone to false negatives while 
the average model is more prone to 
false positives.

Humans attain 76% accuracy compared to the average models’ accuracy of 78%
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Thematic Analysis in Models

Three cases (up2down): 

➢ when humans and models both 
misclassify deepfakes. 

➢ when models correctly predict 
deepfakes that humans miss

➢ when humans correctly predict 
deepfakes that models miss
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Key Findings
• Many additional factors impact the way humans classify including a 

distrusting environment, recently heard audio for comparison, audio 
content, alternative reasoning for faults and audio sample 
construction.

• Models do not strictly perform better than humans, but rather there is a 
significant difference in the way that humans and models classify 
audio samples. 

• Humans are prone to false negatives while models are prone to false 
positives.
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References

• https://www.tensorflow.org/tutorials/audio/simple_audio

• https://jhu-intro-hlt.github.io/slides/speaker-id-2022.pdf
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https://jhu-intro-hlt.github.io/slides/speaker-id-2022.pdf
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